cloudFPGA (cF) API  1.0
The documentation of the source code of cloudFPGA (cF)
test_harris_standalone.py File Reference

Go to the source code of this file.

Namespaces

 test_harris_standalone
 

Functions

def test_harris_standalone.gammaCorrection (src, gamma)
 

Variables

 test_harris_standalone.debug_level = logging.DEBUG
 
 test_harris_standalone.stream
 
 test_harris_standalone.stdout
 
 test_harris_standalone.level
 
int test_harris_standalone.REPEATS = 5
 
list test_harris_standalone.kernels
 
 test_harris_standalone.frame = cv.imread(cv.samples.findFile("CARLA.jpg"))
 
 test_harris_standalone.orig_frame = cv.cvtColor(frame, cv.COLOR_RGB2GRAY)
 
 test_harris_standalone.toc_capture = time.perf_counter()
 
list test_harris_standalone.elapsed_times = [[0 for j in range(REPEATS)] for i in range(len(kernels))]
 
list test_harris_standalone.results = [[0 for j in range(REPEATS)] for i in range(len(kernels))]
 
 test_harris_standalone.start_time = time.time()
 
int test_harris_standalone.blockSize = 2
 
int test_harris_standalone.ksize = 3
 
float test_harris_standalone.freeParameter = 0.04
 
 test_harris_standalone.tmp = frame
 
list test_harris_standalone.channels = [0]
 
 test_harris_standalone.mask = None
 
list test_harris_standalone.histSize = [256]
 
list test_harris_standalone.ranges = [0,256]
 
 test_harris_standalone.hist = cv.calcHist(tmp, channels, mask, histSize, ranges)
 
int test_harris_standalone.t_lower = 50
 
int test_harris_standalone.t_upper = 150
 
 test_harris_standalone.canny = cv.Canny(frame, t_lower, t_upper)
 
 test_harris_standalone.lines = cv.HoughLines(canny, 1, np.pi / 180, 150, None, 0, 0)
 
 test_harris_standalone.x = cv.Sobel(frame, cv.CV_64F, 1, 0, ksize=5)
 
 test_harris_standalone.y = cv.Sobel(frame, cv.CV_64F, 0, 1, ksize=5)
 
 test_harris_standalone.absx = cv.convertScaleAbs(x)
 
 test_harris_standalone.absy = cv.convertScaleAbs(y)
 
 test_harris_standalone.ddepth = cv.CV_16S
 
int test_harris_standalone.kernel_size = 5
 
 test_harris_standalone.source
 
 test_harris_standalone.destination
 
 test_harris_standalone.grid_x
 
 test_harris_standalone.grid_y
 
 test_harris_standalone.grid_z = griddata(destination, source, (grid_x, grid_y), method='cubic')
 
 test_harris_standalone.map_x = np.append([], [ar[:,1] for ar in grid_z]).reshape(784,784)
 
 test_harris_standalone.map_y = np.append([], [ar[:,0] for ar in grid_z]).reshape(784,784)
 
 test_harris_standalone.map_x_32 = map_x.astype('float32')
 
 test_harris_standalone.map_y_32 = map_y.astype('float32')
 
 test_harris_standalone.rows
 
 test_harris_standalone.cols
 
 test_harris_standalone.input_pts = np.float32([[0,0], [cols-1,0], [0,rows-1]])
 
 test_harris_standalone.output_pts = np.float32([[cols-1,0], [0,0], [cols-1,rows-1]])
 
 test_harris_standalone.M = cv.getAffineTransform(input_pts , output_pts)
 
 test_harris_standalone.hog = cv.HOGDescriptor()
 
 test_harris_standalone.h = hog.compute(frame)
 
 test_harris_standalone.end_time = time.time()
 
string test_harris_standalone.image_name = "CARLA_out_kernel_" + kernels[i] + ".jpg"
 
int test_harris_standalone.average_elapsed_time = sum(elapsed_times) / REPEATS
 
 test_harris_standalone.df = pd.DataFrame(elapsed_times)
 
 test_harris_standalone.ax = sns.boxplot(data=df)
 
 test_harris_standalone.loc
 
 test_harris_standalone.axis
 
 test_harris_standalone.labelrotation
 
 test_harris_standalone.fontsize
 
 test_harris_standalone.x1
 
 test_harris_standalone.y1
 
 test_harris_standalone.x2
 
 test_harris_standalone.y2